Transcriptomic landscape,gene signatures and regulatory profile of aging in the human brain |
| |
Abstract: | The molecular characteristics of aging that lead to increased disease susceptibility remain poorly understood. Here we present a transcriptomic profile of the human brain associated with age and aging, derived from a systematic integrative analysis of four independent cohorts of genome-wide expression data from 2202 brain samples (cortex, hippocampus and cerebellum) of individuals of different ages (from young infants, 5–10 years old, to elderly people, up to 100 years old) categorized in age stages by decades. The study provides a signature of 1148 genes detected in cortex, 874 genes in hippocampus and 657 genes in cerebellum, that present significant differential expression changes with age according to a robust gamma rank correlation profiling. The signatures show a significant large overlap of 258 genes between cortex and hippocampus, and 63 common genes between the three brain regions. Focusing on cortex, functional enrichment analysis and cell-type analysis provided biological insight about the aging signature. Response to stress and immune response were up-regulated functions. Synapse, neurotransmission and calcium signaling were down-regulated functions. Cell analysis, derived from single-cell data, disclosed an increase of neuronal activity in the young stages of life and a decline of such activity in the old stages. A regulatory analysis identified the transcription factors (TF) associated with the signature of 258 genes, common to cortex and hippocampus; revealing the role of MEF2(A,D), PDX1, FOSL(1,2) and RFX(5,1) as candidate regulators of the signature. Finally, a deep-learning neural network algorithm was used to build a biological age predictor based on the aging signature.This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Federico Manuel Giorgi and Dr. Shaun Mahony. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|