首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Adaptor Protein p62 Is Involved in RANKL-induced Autophagy and Osteoclastogenesis
Authors:Rui-Fang Li  Gang Chen  Jian-Gang Ren  Wei Zhang  Zhong-Xing Wu  Bing Liu  Yi Zhao  Yi-Fang Zhao
Institution:State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, China;Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, China;Department of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
Abstract:Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases.
Keywords:p62  RANKL  RAW264  7 cells  autophagy  osteoclastogenesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号