首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydrostatic Pressure Effects on Protein Synthesis
Authors:C E Hildebrand and  E C Pollard
Abstract:The effects of high hydrostatic pressure on several phases of cell-free protein synthesis have been examined. The initial rate of polyuridylic acid (poly U)-directed synthesis of polyphenylalanine showed an apparent increase at 100 atm, above which the synthetic rate was reduced sharply with increased pressure up to 640 atm where 95% inhibition was observed. The magnitude of the inhibition of polyphenylalanine synthesis with increased pressure depended strongly on the magnesium salt concentration in the reaction system. Misreading of the poly U message, as measured by insertion of leucine in place of phenylalanine, dropped rapidly with increased pressure from 1 to 350 atm, above which the amount of misreading increased. Enzymatic activation of transfer RNAs (tRNAs) was reduced by increased pressure in the range 100-640 atm, where the rate of tRNA aminoacylation was 80% inhibited. Both nonenzymatic attachment of phenylalanyl-tRNA (phe-tRNA) to the poly U-ribosome complex and stability of the phe-tRNA-poly U-ribosome complex were decreased at high pressures (100-900 atm). The results of the action of pressure on the various phases of cell-free protein synthesis suggest that the major pressure-sensitive element in the protein synthetic machinery is the ribosome.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号