An Implanted Recombination Hot Spot Stimulates Recombination and Enhances Sister Chromatid Cohesion of Heterologous Yacs during Yeast Meiosis |
| |
Authors: | D. D. Sears P. Hieter G. Simchen |
| |
Affiliation: | Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland |
| |
Abstract: | Heterologous yeast artificial chromosomes (YACs) do not recombine with each other and missegregate in 25% of meiosis I events. Recombination hot spots in the yeast Saccharomyces cerevisiae have previously been shown to be associated with sites of meiosis-induced double-strand breaks (DSBs). A 6-kb fragment containing a recombination hot spot/DSB site was implanted onto two heterologous human DNA YACs and was shown to cause the YACs to undergo meiotic recombination in 5-8% of tetrads. Reciprocal exchanges initiated and resolved within the 6-kb insert. Presence of the insert had no detectable effect on meiosis I nondisjunction. Surprisingly, the recombination hot spots acted in cis to significantly reduce precocious sister-chromatid segregation. This novel observation suggests that DSBs are instrumental in maintaining cohesion between sister chromatids in meiosis I. We propose that this previously unknown function of DSBs is mediated by the stimulation of sister-chromatid exchange and/or its intermediates. |
| |
Keywords: | |
|
|