首页 | 本学科首页   官方微博 | 高级检索  
     


Phylogenomic Relationships between Amylolytic Enzymes from 85 Strains of Fungi
Authors:Wanping Chen  Ting Xie  Yanchun Shao  Fusheng Chen
Affiliation:1. National Key Laboratory of Agro-Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China.; 2. Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei Province, China.; 3. College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China.; Oregon State University, United States of America,
Abstract:Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号