首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations
Authors:Chin Jonathan W  Cirino Patrick C
Institution:Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
Abstract:Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG.
Keywords:xylitol  Escherichia coli  resting cells  cofactor regeneration  metabolic engineering
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号