首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of L-type Ca2+ channel current and negative inotropy induced by arachidonic acid in adult rat ventricular myocytes
Authors:Liu Shi J
Affiliation:Dept. of Pharmaceutical Sciences and Dept. of Pharmacology & Toxicology, Univ. of Arkansas for Medical Sciences, 4301 West Markham St. MS 522-3, Little Rock, AR 72205, USA. sliu@uams.edu
Abstract:We have previously shown an increase in arachidonic acid (AA) release in response to proinflammatory cytokines in adult rat ventricular myocytes (ARVM). AA is known to alter channel activities; however, its effects on cardiac L-type Ca(2+) channel current (I(Ca,L)) and excitation-contraction coupling remain unclear. The present study examined effects of AA on I(Ca,L), using the whole cell patch-clamp technique, and on cell shortening (CS) and the Ca(2+) transient of ARVM. I(Ca,L) was monitored in myocytes held at -70 mV and internally equilibrated and externally perfused with Na(+)- and K(+)-free solutions. Exposure to AA caused a voltage-dependent block of I(Ca,L) concentration dependently (IC(50) 8.5 microM). The AA-induced inhibition of I(Ca,L) is consistent with its hyperpolarizing shift in the voltage-dependent properties and reduction in maximum slope conductance. In the presence of AA, BSA completely blocked the AA-induced suppression of I(Ca,L) and CS. Intracellular load with AA had no effect on the current density but caused a small depolarizing shift in the I(Ca,L) activation curve, suggesting a site-specific action of AA. Moreover, intracellular AA had no effect on the extracellular AA-induced decrease in I(Ca,L). Pretreatment with indomethacin, an inhibitor of cyclooxygenase, or addition of nordihydroguaiaretic acid, an inhibitor of lipoxygenase, had no effect on AA-induced changes in I(Ca,L). Furthermore, AA suppressed CS and Ca(2+) transients of intact ARVM with no significant effect on SR function and myofilament Ca(2+) sensitivity. Therefore, these results suggest that AA inhibits contractile function of ARVM, primarily due to its direct inhibition of I(Ca,L) at an extracellular site.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号