首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical shifts and three-dimensional protein structures
Authors:Eric Oldfield
Affiliation:(1) Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, 61801 Urbana, IL, U.S.A.
Abstract:Summary During the past three years it has become possible to compute ab initio the 13C, 15N and 19F NMR chemical shifts of many sites in native proteins. Chemical shifts are beginning to become a useful supplement to more established methods of solution structure determination, and may find utility in solid-state analysis as well. From 13C NMR, information on phiv, PSgr and chi torsions can be obtained, permitting both assignment verification, and structure refinement and prediction. For 15N, both torsional and hydrogen-bonding effects are important, while for 19F, chemical shifts are primarily indicators of the local charge field. Chemical shift calculations are still slow, but shielding hypersurfaces — the shift as a function of the dihedral angles that define the molecular conformation — are becoming accessible. Over the next few years, theoretical and computer hardware improvements will enable more routine use of chemical shifts in structural studies, including the study of metal-ligand interactions, the analysis of drug and substrate binding and catalysis, the study of folding/unfolding pathways, as well as the characterization of conformational substates. Rather than simply being a necessary prerequisite for multidimensional NMR, chemical shifts and chemical shift non-equivalence due to folding are now beginning to be useful for structural characterization.
Keywords:Chemical shifts  Chemical shift tensors  Ab initio calculations  Structure refinement and prediction  Electrostatics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号