首页 | 本学科首页   官方微博 | 高级检索  
   检索      


De novo biosynthesis of Gastrodin in Escherichia coli
Institution:1. Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China;2. Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
Abstract:Gastrodin, a phenolic glycoside, is the key ingredient of Gastrodia elata, a notable herbal plant that has been used to treat various conditions in oriental countries for centuries. Gastrodin is extensively used clinically for its sedative, hypnotic, anticonvulsive and neuroprotective properties in China. Gastrodin is usually produced by plant extraction or chemical synthesis, which has many disadvantages. Herein, we report unprecedented microbial synthesis of gastrodin via an artificial pathway. A Nocardia carboxylic acid reductase, endogenous alcohol dehydrogenases and a Rhodiola glycosyltransferase UGT73B6 transformed 4-hydroxybenzoic acid, an intermediate of ubiquinone biosynthesis, into gastrodin in Escherichia coli. Pathway genes were overexpressed to enhance metabolic flux toward precursor 4-hydroxybenzyl alcohol. Furthermore, the catalytic properties of the UGT73B6 toward phenolic alcohols were improved through directed evolution. The finally engineered strain produced 545 mg l−1 gastrodin in 48 h. This work creates a new route to produce gastrodin, instead of plant extractions and chemical synthesis.
Keywords:Gastrodin  Chorismate  Metabolic engineering  Glycosyltransferase  Directed evolution  Escherichia coli
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号