首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of reduction of high redox potential ferredoxins by the semiquinones of Clostridium pasteurianum flavodoxin and exogenous flavin mononucleotide. Electrostatic and redox potential effects
Authors:C T Przysiecki  G Cheddar  T E Meyer  G Tollin  M A Cusanovich
Abstract:We have measured the ionic strength dependence of the rate constants for the electron-transfer reactions of flavin mononucleotide (FMN) and flavodoxin semiquinones with 10 high redox potential ferredoxins (HiPIP's). The rate constants were extrapolated to infinite ionic strength by using a theoretical model of electrostatic interactions developed in our laboratory. In all cases, the sign of the electrostatic interaction was the same as the protein net charge, but the magnitudes were much smaller. The results are consistent with a model in which the electrical charges are approximately uniformly distributed over the HiPIP surface and in which there are both short- and long-range electrostatic interactions. An electrostatic field calculation for Chromatium vinosum HiPIP is consistent with this. The presumed site of electron transfer includes that region of the protein surface to which the iron-sulfur cluster is nearest and appears to be relatively hydrophobic. The principal short-range electrostatic interaction would involve the negative charge on the iron-sulfur cluster. For some net negatively charged proteins, this effect is magnified, and for net positively charged HiPIP's, it is counterbalanced. The rate constants extrapolated to infinite ionic strength can be correlated with redox potential differences between the reactants, as has previously been shown for cytochrome-flavin semiquinone reactions. Both electrostatic and redox potential effects are magnified for the flavodoxin semiquinone as compared to the FMN semiquinone-HiPIP reactions. This was also observed previously for the flavin semiquinone-cytochrome reactions.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号