首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Deciphering binding mechanism between bovine serum albumin and new pyrazoline compound K4
Authors:Ebru Bozkurt  Halise Inci Gul
Abstract:The binding mechanism of a new and possible drug candidate pyrazoline derivative compound K4 and bovine serum albumin (BSA) was investigated in buffer solution (pH 7.4) using ultraviolet–visible light absorption and steady‐state and synchronous fluorescence techniques. The fluorescence intensity of BSA was quenched in the presence of K4 . The quenching process between BSA and K4 was examined at four different temperatures. Decrease of the quenching constants calculated using the Stern–Volmer equation and at increasing temperature suggested that the interaction BSA– K4 was realized through a static quenching mechanism. Synchronous fluorescence measurements suggested that K4 bounded to BSA at the tryptophan region. Fourier transform infrared spectroscopy results showed that there was no significant change in polarity around the tryptophan residue The forces responsible for the BSA– K4 interaction were examined using thermodynamic parameters. In this study, the calculated negative value of ΔG, the negative value of ΔH and the positive value of ΔS pointed to the interaction being through spontaneous and electrostatic interactions that were dominant for our cases. This study provides a very useful in vitro model to researchers by mimicking in vivo conditions to estimate interactions between a possible drug candidate or a drug and body proteins.
Keywords:bovine serum albumin  fluorescence quenching  FRET  pyrazoline
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号