首页 | 本学科首页   官方微博 | 高级检索  
     


Pseudo‐real‐time retinal layer segmentation for high‐resolution adaptive optics optical coherence tomography
Authors:Worawee Janpongsri  Joey Huang  Ringo Ng  Daniel J. Wahl  Marinko V. Sarunic  Yifan Jian
Abstract:We present a pseudo‐real‐time retinal layer segmentation for high‐resolution Sensorless Adaptive Optics‐Optical Coherence Tomography (SAO‐OCT). Our pseudo‐real‐time segmentation method is based on Dijkstra's algorithm that uses the intensity of pixels and the vertical gradient of the image to find the minimum cost in a geometric graph formulation within a limited search region. It segments six retinal layer boundaries in an iterative process according to their order of prominence. The segmentation time is strongly correlated to the number of retinal layers to be segmented. Our program permits en face images to be extracted during data acquisition to guide the depth specific focus control and depth dependent aberration correction for high‐resolution SAO‐OCT systems. The average processing times for our entire pipeline for segmenting six layers in a retinal B‐scan of 496 × 400 and 240 × 400 pixels are around 25.60 and 13.76 ms, respectively. When reducing the number of layers segmented to only two layers, the time required for a 240 × 400 pixel image is 8.26 ms.image
Keywords:graph search  image processing  pseudo‐real‐time  retinal layer segmentation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号