首页 | 本学科首页   官方微博 | 高级检索  
     


Characterizing niche differentiation among marine consumers with amino acid δ13C fingerprinting
Authors:Thomas Larsen  Thomas Hansen  Jan Dierking
Abstract:Marine food webs are highly compartmentalized, and characterizing the trophic niches among consumers is important for predicting how impact from human activities affects the structuring and functioning of marine food webs. Biomarkers such as bulk stable isotopes have proven to be powerful tools to elucidate trophic niches, but they may lack in resolution, particularly when spatiotemporal variability in a system is high. To close this gap, we investigated whether carbon isotope (δ13C) patterns of essential amino acids (EAAs), also termed δ13CAA fingerprints, can characterize niche differentiation in a highly dynamic marine system. Specifically, we tested the ability of δ13CAA fingerprints to differentiate trophic niches among six functional groups and ten individual species in the Baltic Sea. We also tested whether fingerprints of the common zooplanktivorous fishes, herring and sprat, differ among four Baltic Sea regions with different biochemical conditions and phytoplankton assemblages. Additionally, we investigated how these results compared to bulk C and N isotope data for the same sample set. We found significantly different δ13CAA fingerprints among all six functional groups. Species differentiation was in comparison less distinct, due to partial convergence of the species' fingerprints within functional groups. Herring and sprat displayed region‐specific δ13CAA fingerprints indicating that this approach could be used as a migratory marker. Niche metrics analyses showed that bulk isotope data had a lower power to differentiate between trophic niches than δ13CAA fingerprinting. We conclude that δ13CAA fingerprinting has a strong potential to advance our understanding of ecological niches, and trophic linkages from producers to higher trophic levels in dynamic marine systems. Given how management practices of marine resources and habitats are reshaping the structure and function of marine food webs, implementing new and powerful tracer methods are urgently needed to improve the knowledge base for policy makers.
Keywords:Baltic Sea  carbon stable isotopes  diet partitioning  fish diets  food web reconstruction  migration tracking  phytoplankton  predator–  prey dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号