首页 | 本学科首页   官方微博 | 高级检索  
     


Topographic heterogeneity lengthens the duration of pollinator resources
Authors:Rachael L. Olliff‐Yang  David D. Ackerly
Abstract:The availability of sufficient and diverse resources across time is important for maintenance of biodiversity and ecosystem functioning. In this study, we examine the potential for variation in environmental conditions across topographic gradients to extend floral resource timing. Flowering time on a landscape may vary across topography due to differences in abiotic factors, species turnover, or genotypic differences. However, the extent to which this variation in phenology affects overall flowering duration on a landscape, and the components of diversity that influence flowering duration, are unexplored. We investigate whether differences in flowering time due to topography yield an overall extension in duration of flowering resources in a northern California grassland. We recorded flowering time of pollinator resource species across four successive spring growing seasons (2015–2018) on paired north and south aspects. Flowering time differences were evaluated both at the community level and within species present on both paired aspects. The role of plasticity was examined in an experimental case study using genotypes of Lasthenia gracilis. We found that aspect is a strong determinant of phenology, with earlier flowering on warmer south‐facing slopes. Aspect differences resulted in complementarity in timing of flowering resources across sites, as aspects that started flowering earlier also ended earlier. Complementarity between north and south aspects served to extend the flowering time of pollinator resources by an average of 4–8 days (8%–15%), depending on the year. This extension can be attributed to both within‐species responses to aspect differences and species turnover. Flowering of L. gracilis genotypes was distinct across aspects, demonstrating that plasticity can drive the extension of flowering duration. Our findings indicate that heterogeneous topography can extend overall flowering time of pollinator resources, which may support pollinator biodiversity. Extension was most pronounced at the community level, which incorporates species turnover as well as plastic and genotypic differences within species.
Keywords:community  flowering period  flowering time  microclimate  phenological asynchrony  phenology  plant phenology  plant-animal interactions  pollinator resources  resource duration  topography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号