首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Homocholine and Short-Chain N-Alkyl Choline Analogues as Substrates for Torpedo Choline Acetyltransferase
Authors:Y A Luqmani  P J Richardson
Institution:Abteilung Neurochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, F.R.G.
Abstract:Abstract: The kinetic parameters, Km and Vmax, for the acetylation of choline and several close analogues were determined by using (a) purified choline acetyltransferase and (b) a hypotonically lysed synaptosomal extract prepared from the electric organ of Torpedo marmorata. Whereas the Km for choline was similar in both cases (0.51 and 0.42 m m ), the crude enzyme showed a three- to fivefold greater affinity for its analogues than the purified enzyme, the activity decreasing rapidly with increased N -alkyl substitution. Homocholine was a poor substrate, but was clearly acetylated by both preparations. The effect of salt on analogue acetylation by the crude enzyme was studied by increasing NaCl concentration from zero to 150 m m . There was an increase in both Km and Vmax for all substrates; choline, N,N,N -dimethylmonoethylaminoethanol, -monomethyldiethylaminoethanol and -dimethylmonobutylaminoethanol showed the greatest changes, whilst N,N,N -triethylaminoethanol and -dimethylmonopropylaminoethanol and homocholine were much less affected. However, in all cases, the kinetic parameter Vmax / Km remained unchanged. The maximal velocities of the different substrates varied more under conditions of high than of low salt. Sodium chloride up to 300 m m had no effect on the amount of enzyme which was bound to membranes in the synaptosomal extract. It is concluded that choline acetyltransferase has a high degree of substrate specificity, which is slightly altered by purification. The effects of salt cannot be explained as a consequence of nonspecific ionic association with membranes.
Keywords:Choline acetyltransferase  Homocholine  Choline analogues  Acetylation  Substrate specificity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号