首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alterations of events related to ovarian function in tumor necrosis factor receptor type I knockout mice
Authors:Roby K F  Son D S  Terranova P F
Institution:Departments of Anatomy and Cell Biology, Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, 66160, USA.
Abstract:C57BL6 mice with targeted disruption of tumor necrosis factor (TNF) type 1 receptor (TNFRI) exhibited early vaginal opening when compared with wild-type mice (Day 24 +/- 0.6, n = 10, vs. 28 +/- 0.2, n = 11, P < 0.001). Equine CG- and hCG-treated TNFRI null mice ovulated more ova than did controls at two distinct times during the prepubertal period (Day 21: 13.4 +/- 1.7 vs. 7.3 +/- 1.4, P < 0.05; Day 25: 20.7 +/- 2.7 vs. 13.0 +/- 1.3, P < 0.05). Enhanced responsiveness to gonadotropins was not observed in adult mice. At 6 mo of age only 40% of TNFRI null mice exhibited estrous cycles. Those TNFRI null mice with estrous cycles spent significantly more time in diestrus and less time in estrus than controls. TNFRI null mice delivered significantly fewer litters (P < 0.001) than did C57BL6 and TNFRII null mice (TNFRI null 2.59 +/- 0.39; C57BL6 4.91 +/- 0.57; TNFRII null 5.40 +/- 0.60 litters/mo/10 pairs over a 12-mo period). Ovarian dispersates prepared on Day 25 of age from control and TNFRI knockout mice were cultured with and without 10 ng TNF/ml. TNF inhibited LH-stimulated progesterone and estradiol secretion by control dispersates but had no effect on cAMP. In contrast, TNF did not affect LH-stimulated accumulation of progesterone, estradiol, or cAMP by ovarian dispersates from TNFRI knockout mice. The results indicate that lack of TNFRI enhances ovarian responsiveness to gonadotropins during the prepubertal period and may be related to early vaginal opening. The lack of TNFRI is associated with early senescence and poor fertility. These studies demonstrate that the mechanism of TNF-mediated inhibition of steroidogenesis is most likely via TNFRI.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号