首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Application of a rapid thin section method for observations on decomposing litter in mor humus form in a subalpine coniferous forest
Authors:Xing-jun Tian  Hiroshi Takeda  Tatsuo Ando
Institution:(1) Laboratory of Forest Ecology, Graduate School of Agricultural Science, Kyoto University, 606-01 Kyoto, Japan;(2) Institute for Basin Ecosystem Studies, Gifu University, Gifu, Japan
Abstract:Morphological changes in the decomposing litter ofAbies spp. andBetula spp. in a mor humus form were studied by a rapid thin section method. According to the morphological characteristics, the epidermis, mesophyll and vascular bundleof Abies needle litter were classified into four types: (i) newly fallen; (ii) slightly decomposed; (iii) moderately decomposed; and (iv) greatly decomposed. The distribution of these tissue types along the profile of the forest floor was then investigated. The morphological changes in other litter types, such as branches, scales andBetula leaves during decomposition were observed directly with microscope and electron microscope. Five vertical thin sections and 80 horizontal thin sections were used for these observations and investigations. the decomposition ofAbies litter was slower than that ofBetula litter. The relative decomposition rate of the tissues was in the order of: mesophyll>vascular bundle >epidermis inAbies needles; mesophyll≥epidermis>vascular bundles inBetula leaves; and inner bark >xylem>outer bark in bothAbies andBetula branches. The last remains of the litter were usually stomata, segments of seminiferous scale and outer bark ofAbies. The decomposition of plant litter occurred mainly within the L and F layers of the soil (0–5 cm in depth).Abies needles andBetula leaves completely disappeared at depths of 0–6 cm and 0–4 cm, respectively. Branches disappeared within the top of 5 cm and 6–8 cm forBetula and forAbies, respectively. The scales ofAbies were most slowly decomposed in the soil layers.
Keywords:coniferous forest  decomposition  litter  micromorphology  soil
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号