首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Osmosis: a bimodal theory with implications for symmetry
Authors:A Hill
Abstract:A theory is advanced that volume transfer across a membrane pore during osmosis takes place in two modes: if solute is sterically excluded from the pore a pressure gradient is set up and viscous flow of solvent results; if solute can enter the pore then osmotic flow is a diffusive phenomenon, and there is no pressure gradient in any part of the pore to which solute has access, even at low concentration due to a repulsive wall field. As a consequence the reflexion coefficients sigma s and sigma f for osmosis and ultrafiltration are not equal, although equality is usually assumed to result from an underlying thermodynamic reciprocity; instead, the two coefficients represent essentially different processes. These results follow from three basic thermodynamic considerations which have usually been overlooked: (i) there is a qualitative difference between a permeable pore and an impermeable one, the latter having a discontinuity of solute activity at the mouth, which the former does not; (ii) the osmotic pressure within the pore is determined by the activity of solute not the concentration; (iii) the effective resistance to flow through a channel depends upon the nature of the régime, being different for diffusive and viscous flow. An expression for sigma s is derived and shown to be compatible with experimental data on polymer membranes and homoporous bilayers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号