首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary,California
Authors:D W Smith  A J Horne
Institution:(1) CH2M-Hill Inc., 6425 Christie St., 94608 Emeryville, California, USA;(2) Department of Civil Engineering, University of California, 94720 Berkeley, California, USA
Abstract:Planktonic algae are not abundant in the brackish waters of San Francisco Bay-estuary (mean chlorophyll a 5 µg 1–1), despite the high level of nutrients usually present due to the input of treated sewage from 3 million people. Macroalgae (seaweeds) are sometimes locally abundant in the Bay. Phytoplankton are abundant (chlorophyll a > 50 µg 1–1) and seaweeds uncommon in the almost freshwater Delta and upper estuary despite lower nutrient levels. Direct competition between these algal groups could explain the observed distributions.Given the size of the algae, large containers were needed for the determination of possible resource competition. Experiments were carried out in flow-through mesocosms (analog tanks) of 3 m3 volume. The macroalgae Ulva lactuca or Gigartina exasperata and a diatom-dominated phytoplankton, all from San Francisco Bay, were grown separately and together and with and without treated sewage effluent or other artificial nutrient additions. When grown alone phytoplankton and macroalgae were greatly stimulated by wastewater addition to unmodified baywater. The phytoplankton grew much more slowly in the presence of natural densities of Ulva. Allelochemical effects were tested for but not demonstrated.Resource competition for inorganic nitrogen was determined to be the probable cause of the depression of phytoplankton by Ulva. At its rapid growth rates in the flow-through mesocosms (up to 14% day–1) this macroalga can reduce inorganic nitrogen to low levels. Ulva has a greater affinity (lower KS) for nitrogen than do some of the plankton of the Bay. Ulva may outcompete phytoplankton by reducing nitrogen to levels below those capable of supporting phytoplankton growth. Other macroalgae such as Gigartina and Enteromorpha need to be studied to determine if they also can depress phytoplankton growth by resource competition.
Keywords:Mesocosm  bioassay  San Francisco Bay  phytoplankton  macroalgae  resource competition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号