首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular,quantitative and abiotic variables for the delineation of evolutionary significant units: case of sandalwood (<Emphasis Type="Italic">Santalum austrocaledonicum</Emphasis> Vieillard) in New Caledonia
Authors:Lorraine Bottin  Jacques Tassin  Robert Nasi  Jean-Marc Bouvet
Institution:1.Forestry department,CIRAD,Montpellier Cedex 5,France;2.Forestry department,CIRAD,Montpellier Cedex 5,France;3.Institut Agronomique Néo-Calédonien,IAC,Nouvelle-Calédonie,France;4.Programme on Environmental Services and Sustainable Use of Forests,CIFOR,Jakarta,Indonesia
Abstract:Various approaches have been developed to define conservation units for plant and animal species. In this study we combined nuclear microsatellites (from a previous published study) and chloroplast microsatellites (assessed in the present study), leaf and seed morphology traits and abiotic variables (climate and soil) to define evolutionary significant units (ESU) of Santalum austrocaledonicum, a tree species growing in New Caledonia. Results for chloroplast microsatellites showed that the total population heterozygosity was␣high, (H cp = 0.84) but varied between islands. Differentiation was strong in the total population (F stcp = 0.66) but also within the main island Grande Terre (F stcp = 0.73) and within Iles Loyauté (F stcp = 0.52), highlighting a limited gene flow between populations. These results confirmed those obtained with nuclear microsatellites. The cluster analysis on molecular markers discriminated two main groups constituted by the populations of Grande Terre and the populations of Iles Loyauté. A principal component analysis of leaf and seed morphology traits singled out the populations of Iles Loyauté and the western populations of Grande Terre. Quantitative genetic analyses showed that the variation between populations was under genetic control (broad sense heritability close to 80%). A high correlation between rainfall and morphological traits suggested an impact of climate on this variation. The integration of these results allows to define two ESUs, one corresponding to Grande Terre and Ile des Pins and the other the Iles Loyauté archipelago. This study stresses the need to restore some populations of Grande Terre that are currently threatened by their small size.
Keywords:Santalum austrocaledonicum            Nuclear microsatellites  Chloroplastic microsatellites  Morphological traits  Evolutionary significant units
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号