首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational changes in photosystem II supercomplexes upon removal of extrinsic subunits
Authors:Boekema E J  van Breemen J F  van Roon H  Dekker J P
Institution:Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Abstract:Photosystem II is a multisubunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts. It consists of a large number of intrinsic membrane proteins involved in light-harvesting and electron-transfer processes and of a number of extrinsic proteins required to stabilize photosynthetic oxygen evolution. We studied the structure of dimeric supercomplexes of photosystem II and its associated light-harvesting antenna by electron microscopy and single-particle image analysis. Comparison of averaged projections from native complexes and complexes without extrinsic polypeptides indicates that the removal of 17 and 23 kDa extrinsic subunits induces a shift of about 1.2 nm in the position of the monomeric peripheral antenna protein CP29 toward the central part of the supercomplex. Removal of the 33 kDa extrinsic protein induces an inward shift of the strongly bound trimeric light-harvesting complex II (S-LHCII) of about 0.9 nm, and in addition destabilizes the monomer-monomer interactions in the central core dimer, leading to structural rearrangements of the core monomers. It is concluded that the extrinsic subunits keep the S-LHCII and CP29 subunits in proper positions at some distance from the central part of the photosystem II core dimer to ensure a directed transfer of excitation energy through the monomeric peripheral antenna proteins CP26 and CP29 and/or to maintain sequestered domains of inorganic cofactors required for oxygen evolution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号