首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The relative contribution of CHK1 and CHK2 to Adriamycin-induced checkpoint
Authors:Ho Chui Chui  Siu Wai Yi  Chow Jeremy P H  Lau Anita  Arooz Talha  Tong Hoi Yee  Ng Irene O L  Poon Randy Y C
Institution:Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
Abstract:Topoisomerase II poisons like Adriamycin (ADR, doxorubicin) are clinically important chemotherapeutic agents. Adriamycin-induced DNA damage checkpoint activates ATM and ATR, which could in turn inhibit the cell cycle engine through either CHK1 or CHK2. In this study, we characterized whether CHK1 or CHK2 is required for Adriamycin-induced checkpoint. We found that both CHK1 and CHK2 were phosphorylated after Adriamycin treatment. Several lines of evidence from dominant-negative mutants, short hairpin RNA (shRNA), and knockout cells indicated that CHK1, but not CHK2, is critical for Adriamycin-induced cell cycle arrest. Disruption of CHK1 function bypassed the checkpoint, as manifested by the increase in CDC25A, activation of CDC2, increase in histone H3 phosphorylation, and reduction in cell survival after Adriamycin treatment. In contrast, CHK2 is dispensable for Adriamycin-induced responses. Finally, we found that CHK1 was upregulated in primary hepatocellular carcinoma (HCC), albeit as an inactive form. The presence of a stockpile of dormant CHK1 in cancer cells may have important implications for treatments like topoisomerase II poisons. Collectively, the available data underscore the pivotal role of CHK1 in checkpoint responses to a variety of stresses.
Keywords:Adriamycin  Cell cycle  Checkpoint  DNA damage  DNA replication
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号