A test of the punctuated-cycling hypothesis in Ambystoma forelimb regenerates: the roles of animal size, limb innervation, and the aneurogenic condition |
| |
Authors: | Bruce L. Tomlinson Philip M. Barger |
| |
Affiliation: | Ohio State University, Department of Zoology, Columbus 43210-1293. |
| |
Abstract: | The punctuated-cycling (PC) hypothesis [39] predicts that the proportion of actively cycling (AC) cells within the blastema influences the rate of limb regeneration in urodele amphibians. To test this, we compared the rate of regeneration and the parameters of the PC hypothesis in small and large Ambystoma mexicanum larvae and in aneurogenic limbs of Ambystoma maculatum. Aneurogenic limbs regenerated more slowly than limbs of small axolotls, but considerably faster than limbs of large axolotls. Regardless of regeneration rates, virtually all blastema cells were in the proliferative fraction (Pf) (ranging from 92.3% +/- 4.2% to 96.2% +/- 3.4%). As predicted, in the blastemata of more rapidly regenerating small axolotls, 86% of the proliferative fraction was actively cycling, but as regeneration slowed, the proportion of the proliferative fraction that was actively cycling decreased (the AC of aneurogenic limbs being 69.5%, and that of large axolotl limbs being 57.3%) and the proportion of transiently quiescent cells increased. The parameters of the PC hypothesis were also examined in small axolotls at two different times during regeneration. During dedifferentiation and initial blastema formation, 61% of the cells in the proliferative fraction were actively cycling and 34% were transiently quiescent. During the rapid-growth phase of the blastema, 88% of the cells in the proliferative fraction were actively cycling and only 7% of the cells were transiently quiescent. It therefore appears that dedifferentiated cells do not immediately begin active cycling and that the transiently quiescent population is relatively large; however, during the period of rapid growth the proportion of transiently quiescent cells is small. In amputated/denervated limbs of small axolotls, the size of the proliferative fraction decreased as the length of the denervation interval increased. Furthermore, with prolonged denervation the total proportion of actively cycling blastema cells also declined (to about 15%). The failure of denervated limbs to regenerate was correlated with an increased nonproliferative fraction and a reduced proportion of actively cycling cells. |
| |
Keywords: | |
|
|