首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The relevance of malondialdehyde as a biochemical index of lipid peroxidation of postischemic tissues in the rat and human beings
Authors:G Lazzarino  B Tavazzi  D Di Pierro  R Vagnozzi  M Penco  B Giardina
Institution:(1) Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Via O. Raimondo, 00173 Rome, Italy;(2) Chair of Neurosurgery, University of Rome “Tor Vergata”, Via O. Raimondo, 00173 Rome, Italy;(3) Department of Internal Medicine, University of Rome “Tor Vergata”, Via O. Raimondo, 00173 Rome, Italy;(4) Institute of Chemistry and Clinical Chemistry and Centro C.N.R. per lo studio dei recettori, Catholic University of Rome “Sacro Cuore”, Rome, Italy
Abstract:By using a recently developed ion-pairing high-performance liquid chromatographic method for the direct determination of malondialdehyde (MDA) and several other acid-soluble low-mol-wt compounds (ascorbate, oxypurines, nucleosides, nicotinic coenzymes, high-energy phosphates), the variations of tissue and plasma MDA as a function of ischemia and reperfusion were determined in the rat (isolated Langendorff-perfused hearts and short-term incomplete cerebral ischemia) and in human beings (patients suffering from acute myocardial infarction subjected to fibrinolysis). In the rat, the data obtained indicate that, contrary to what had been previously reported in literature, MDA is not present either in control heart or in control brain. Oxygen deprivation induces the production of a low, but detectable amount of MDA in both heart and brain, whereas reperfusion causes a marked increase of MDA in both tissues. In human beings, plasma MDA was deeply affected only in patients suffering from acute myocardial infarction with successful thrombolysis, thus indicating the occurrence of oxygen radical-mediated tissue injury also in humans. On the whole, these results suggest that MDA is a valid biochemical marker of lipid peroxidation of postischemic tissues, which however needs a reliable analytical technique for its determination.
Keywords:Malondialdehyde  oxygen free radicals  reperfusion injury
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号