首页 | 本学科首页   官方微博 | 高级检索  
     


Toxin constraint explains diet choice,survival and population dynamics in a molluscivore shorebird
Authors:Jan A. van Gils  Matthijs van der Geest  Jutta Leyrer  Thomas Oudman  Tamar Lok  Jeroen Onrust  Jimmy de Fouw  Tjisse van der Heide  Piet J. van den Hout  Bernard Spaans  Anne Dekinga  Maarten Brugge  Theunis Piersma
Abstract:
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d''Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.
Keywords:diet choice, hydrogen sulphide, optimal foraging theory, predator–  prey interactions, survival rate, toxins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号