首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection
Authors:Wang Zheng-Yi  Soanes Darren M  Kershaw Michael J  Talbot Nicholas J
Institution:School of Biosciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter, EX4 4QG, UK.
Abstract:The rice blast fungus Magnaporthe grisea infects plants by means of specialized infection structures known as appressoria. Turgor generated in the appressorium provides the invasive force that allows the fungus to breach the leaf cuticle with a narrow-penetration hypha gaining entry to the underlying epidermal cell. Appressorium maturation in M. grisea involves mass transfer of lipid bodies to the developing appressorium, coupled to autophagic cell death in the conidium and rapid lipolysis at the onset of appressorial turgor generation. Here, we report identification of the principal components of lipid metabolism in M. grisea based on genome sequence analysis. We show that deletion of any of the eight putative intracellular triacylglycerol lipase-encoding genes from the fungus is insufficient to prevent plant infection, highlighting the complexity and redundancy associated with appressorial lipolysis. In contrast, we demonstrate that a peroxisomally located multifunctional, fatty acid beta-oxidation enzyme is critical to appressorium physiology, and blocking peroxisomal biogenesis prevents plant infection. Taken together, our results indicate that, although triacylglycerol breakdown in the appressorium involves the concerted action of several lipases, fatty acid metabolism and consequent generation of acetyl CoA are necessary for M. grisea to complete its prepenetration phase of development and enter the host plant.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号