首页 | 本学科首页   官方微博 | 高级检索  
     


Genomic and proteomic perspectives in cell culture engineering.
Authors:Rashmi Korke  Anette Rink  Teck Keong Seow  Maxey C M Chung  Craig W Beattie  Wei Shou Hu
Affiliation:Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
Abstract:In the last few years, the number of biologics produced by mammalian cells have been steadily increasing. The advances in cell culture engineering science have contributed significantly to this increase. A common path of product and process development has emerged in the last decade and the host cell lines frequently used have converged to only a few. Selection of cell clones, their adaptation to a desired growth environment, and improving their productivity has been key to developing a new process. However, the fundamental understanding of changes during the selection and adaptation process is still lacking. Some cells may undergo irreversible alteration at the genome level, some may exhibit changes in their gene expression pattern, while others may incur neither genetic reconstruction nor gene expression changes, but only modulation of various fluxes by changing nutrient/metabolite concentrations and enzyme activities. It is likely that the selection of cell clones and their adaptation to various culture conditions may involve alterations not only in cellular machinery directly related to the selected marker or adapted behavior, but also those which may or may not be essential for selection or adaptation. The genomic and proteomic research tools enable one to globally survey the alterations at mRNA and protein levels and to unveil their regulation. Undoubtedly, a better understanding of these cellular processes at the molecular level will lead to a better strategy for 'designing' producing cells. Herein the genomic and proteomic tools are briefly reviewed and their impact on cell culture engineering is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号