Roles of glutathione and glutathione peroxidase in the protection against endothelial cell injury induced by 15-hydroperoxyeicosatetraenoic acid. |
| |
Authors: | H Ochi I Morita S Murota |
| |
Affiliation: | Section of Physiological Chemistry, Faculty of Dentistry, Tokyo Medical and Dental University, Japan. |
| |
Abstract: | We investigated the role of the glutathione redox cycle in endothelial cell injury induced by 15(S)-hydroperoxyeicosatetraenoic acid (15-HPETE), an arachidonate lipoxygenase product. Pretreatment of endothelial monolayers with reduced glutathione (GSH) markedly suppressed 15-HPETE-induced cellular injury, which was determined by the 51Cr-release assay. 15-HPETE-induced cytotoxicity was modified by several GSH-modulating agents such as buthionine sulfoximine and 2-oxothiazolidine-4-carboxylate, indicating that this cyto-protective action of GSH was correlated with the intracellular GSH level. These GSH-modulating agents also modified the conversion of 15-HPETE to 15(S)-hydroxyeicosatetraenoic acid by endothelial cells. On the other hand, the exposure of endothelial cell monolayers to 15-HPETE did not deplete intracellular GSH levels but decreased GSH peroxidase activity. In addition, sodium selenite and ebselen, a stimulator and mimic of GSH peroxidase activity, respectively, displayed remarkable protective effects against 15-HPETE-induced cytotoxicity. These results suggest that intracellular GSH plays a pivotal role in the protection against 15-HPETE-induced endothelial cell injury, and that the decreased activity of GSH peroxidase activity is involved in 15-HPETE-induced cytotoxicity. |
| |
Keywords: | |
|
|