Activation of gamma-aminobutyric acid insensitive chloride channels in mouse brain synaptic vesicles by avermectin B1a. |
| |
Authors: | G T Payne D M Soderlund |
| |
Affiliation: | Department of Entomology, Cornell University, Geneva, New York 14456. |
| |
Abstract: | The interaction of avermectin B1a (AVMB1a) with mouse brain chloride channels was characterized using a radiochloride efflux assay. The loss of intravesicular chloride from synaptoneurosomes preloaded with 36Cl involved an initial rapid phase followed by a slower phase that approached equilibrium within 10 min. AVMB1a stimulated a 30% loss of intravesicular chloride within the first 2 s of exposure; however, AVMB1a had no effect on the rate of the slower phase of chloride loss. Experiments with lysed synaptoneurosomes showed that both chloride loading and basal and AVMB1a-stimulated chloride release required the presence of intact vesicles. The efflux of 36Cl from mouse brain synaptosomes and the stimulation of efflux by AVMB1a were qualitatively similar to the results obtained with synaptoneurosomes but involved much lower overall levels of chloride loading and release. AVMB1a produced half-maximal stimulation of chloride efflux from synaptoneurosomes at a concentration of 2.1 +/- 0.3 microM and a 35.4 +/- 1.4% maximal loss of intravesicular chloride at saturating concentrations. gamma-Aminobutyric acid (GABA), bicuculline, or the chloride channel blockers picrotoxinin, t-butylbicyclophosphorothionate (TBPS) 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene 9-carboxylic acid (9-CA) had little or no effect on the loss of chloride from synaptoneurosomes either in the presence or the absence of AVMB1a. However, the chlorinated cycloalkane insecticides dieldrin and lindane were equally effective as inhibitors of GABA-dependent chloride uptake and AVMB1a-stimulated chloride efflux. These data demonstrate that AVMB1a-stimulated chloride efflux from mouse brain synaptic vesicles results from the activation of GABA-insensitive chloride channels and that this action is distinct from their previously documented effects on GABA-gated chloride channels in mouse brain preparations. Our findings imply that both GABA-gated and GABA-insensitive chloride channels may be toxicologically significant targets for the action of avermectins. |
| |
Keywords: | |
|
|