首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Vasopressin-dependent water permeability of the basolateral membrane of the kidney outer medullary collecting duct in postnatal ontogenesis in rats
Authors:Baturina G S  Khodus G R  Nesterov V V  Solenov E I  Ivanova L N
Institution:Institute of Cytology and Genetics, Russian Acad. Sci., Siberian Branch, 10 Pr. Lavrentyeva, Novosibirsk 630090, Russia.
Abstract:Kidneys of new-born animals are resistant to arginine vasopressin (AVP). The ability of the hormone to regulate water permeability of the collecting duct can be seen from weaning period, probably due to the maturation of the intracellular signaling pathway. The purpose of the present work was to investigate the effect of V2 receptor agonist dDAVP on the water permeability of OMCD basolateral membrane in 10-, 22- and 60-day old Wistar rats. We also estimated ontogenetic gene expression of AQP2, AQP3, AQP4 and V2 receptor. Osmotic water permeability (Pf) of the basolateral membrane of microdissected OMCD was measured under control conditions and after incubation with the agonist V2 receptor desmopressin (dDAVP; 10(-7) M). Water permeability in 10- and 22-day old rats under control conditions were significantly higher than in adults. Desmopressin stimulated significant increase of this parameter in 22-day old pups (Pf = = 125 +/- 4.85; Pf = 174 +/- 8.2 microns/s, p < 0.001) and adult rats (Pf = 100.5 +/- 7.38; Pf = 178.8 +/- 9.54 microns/s, p < 0.001). Osmotic water permeability of the OMCD basolateral membrane in 10-day old rats does not depend on dDAVP (Pf = 172.5 +/- 23.8; Pf = 164.8 +/- 34 microns/s). With the RT-PCR, we observed a gradual increase of AQP2 and V2 receptor genes expression during postnatal ontogenesis. The gene expression of AQP3 and AQP4 remained unchanged during postnatal ontogenesis. In general, the water permeability of the OMCD basolateral membrane of rats can be stimulated by AVP since the 22nd day of postnatal life. The water permeability of the OMCD basolateral membrane under control conditions gradually decreased during postnatal development, while gene expression of AQP3 and AQP4 was unchanged. The mechanism of this decrease remains to be established.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号