首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Purification and characterization of two novel phosphoglycerides that modulate the glucocorticoid-receptor complex. Evidence for two modulator binding sites in the occupied/unactivated steroid hormone receptor
Authors:P V Bodine  G Litwack
Institution:Fels Institute for Cancer Research and Molecular Biology, Temple University Medicine, Philadelphia, Pennsylvania 19140.
Abstract:Modulator is a novel ether aminophosphoglyceride that is commonly known as the low-molecular weight inhibitor of glucocorticoid-receptor complex activation. An ultra-large scale purification of modulator has been performed from 1000 rat livers. This purification was similar to our previous one (Bodine, P. V., and Litwack, G. (1988) J. Biol. Chem. 263, 3501-3512), but involved the chromatography of heated rat liver cytosol on a 7-liter bed volume Sephadex G-15 gel filtration column. Two peaks of modulator activity eluted from the giant gel-filtration column, and these two modulators (peak-1 and peak-2) were chromatographed separately on Dowex-1 anion-exchange columns. Both modulators were determined to be homogeneous after this step by analytical high-performance thin-layer chromatography, analytical high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy. Furthermore, although peak-1 and peak-2 differed in molecular weight, the two modulators co-chromatographed by anion-exchange, high-performance thin-layer, and high-performance liquid chromatography. These results suggest that the two modulators have similar structures and therefore appear to be isoforms of each other. In addition, both of the modulators are organic molecules that are devoid of molybdenum and 62 other metals. Activity assays indicated that the larger peak-1 modulator was five times more potent than the smaller peak-2 modulator at inhibiting receptor activation and at stabilizing the steroid-binding ability of the occupied and unoccupied receptors. Mixing experiments indicated that the activities of the two modulators were synergistic for both receptor activation inhibition and for occupied receptor steroid-binding stabilization. However, the effects of peak-1 and peak-2 modulator on unoccupied receptor steroid-binding stabilization were additive. Thus, although the two modulators have similar chemical structures, the biological potencies of the two compounds are different. Moreover, these results suggest that although the unoccupied/unactivated receptor has only one modulator binding site, the occupied/unactivated receptor has two modulator binding sites, one site for each of the isoforms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号