首页 | 本学科首页   官方微博 | 高级检索  
     


The in vivo synthesis of plant sesquiterpenes by Escherichia coli.
Authors:V J Martin  Y Yoshikuni  J D Keasling
Affiliation:Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462, USA.
Abstract:Three plant genes encoding (+)-delta-cadinene, 5-epi-aristolochene, and vetispiradiene cyclases were expressed in Escherichia coli to evaluate the potential of this bacterium to synthesize sesquiterpenes in vivo. Various growth temperatures, carbon sources, and host strains were examined to optimize terpene production. The highest levels of sesquiterpene production occurred when the enzymes were expressed in strain DH5alpha from the trc promoter (Ptrc) of the high-copy plasmidpTrc99A in M9 medium supplemented with 0.2% (v/v) glycerol at 30 degrees C for 5-epi-aristolochene and vetispiradiene and 37 degrees C for (+)-delta-cadinene. The highest concentrations of sesquiterpenes observed were 10.3 microg of (+)-delta-cadinene, 0.24 microg of 5-epi-aristolochene (measured as (+)-delta-cadinene equivalents), and 6.4 microg of vetispiradiene (measured as (+)-delta-cadinene equivalents) per liter of culture. These sesquiterpene production levels are >500-fold lower than carotenoid production, both of which are synthesized from endogenous trans-farnesyl diphosphate (FDP) in E. coli. Based on these results, we conclude that the limiting factor for sesquiterpene synthesis in E. coli is the poor expression of the cyclase enzyme and not supply of the FDP precursor.
Keywords:isoprenoid  sesquiterpene  cyclase  (+)‐δ‐cadinene  5‐epi‐aristolochene  vetispiradiene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号