首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutant dn Influences Dry Matter Distribution, Assimilate Partitioning and Flowering in Lathyrus odoratus L.
Authors:BEVERIDGE  C A; ROSS  J J; MURFET  I C
Abstract:The flowering mutant dn in sweet pea was used as a tool to study14C-assimilate and dry matter partitioning with respect to nutrientdiversion theories on the control of flower initiation. Wildtype plants (Dnh) are photoperiodic and exhibit late floweringand profuse basal branching in short days while mutant plants(dn) are day neutral, early flowering and devoid of basal laterals.In short days, dn plants exported a significantly greater proportionof assimilate acropetally than (Dnh) plants and the upper portionof dn plants had a greater dry weight. These differences werereduced dramatically when basal laterals were excised regularlyfrom the (Dnh) plants although the difference in flowering remained.However, the effect of dn on resource allocation within theapical region may be more important in regard to flowering thanthe effect on acropetal versus basipetal movement. In shortdays, the dn plants partitioned significantly more resourcesinto their internodes and petioles, and less into their leaflets,than Dnh plants as shown by dry weight and 14C-assimilate measurements.These differences were apparent from as early as node 7 up tothe node of flower initiation in dn plants (~node 30) and theywere not eliminated by removal of basal laterals from Dnh plants.Differences between dn and Dnh plants in partitioning and floweringwere largely eliminated under long days. The fact that in thisspecies a single gene influences both resource allocation andflower initiation lends further support to nutrient diversionhypotheses on the control of flowering. Key words: Assimilate partitioning, branching, flowering, mutant, sweet pea
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号