首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Absorption of Radionuclides from the Fukushima Nuclear Accident by a Novel Algal Strain
Authors:Hiroki Shimura  Katsuhiko Itoh  Atsushi Sugiyama  Sayaka Ichijo  Masashi Ichijo  Fumihiko Furuya  Yuji Nakamura  Ken Kitahara  Kazuhiko Kobayashi  Yasuhiro Yukawa  Tetsuro Kobayashi
Abstract:Large quantities of radionuclides have leaked from the Fukushima Daiichi Nuclear Power Plant into the surrounding environment. Effective prevention of health hazards resulting from radiation exposure will require the development of efficient and economical methods for decontaminating radioactive wastewater and aquatic ecosystems. Here we describe the accumulation of water-soluble radionuclides released by nuclear reactors by a novel strain of alga. The newly discovered green microalgae, Parachlorella sp. binos (Binos) has a thick alginate-containing extracellular matrix and abundant chloroplasts. When this strain was cultured with radioiodine, a light-dependent uptake of radioiodine was observed. In dark conditions, radioiodine uptake was induced by addition of hydrogen superoxide. High-resolution secondary ion mass spectrometry (SIMS) showed a localization of accumulated iodine in the cytosol. This alga also exhibited highly efficient incorporation of the radioactive isotopes strontium and cesium in a light-independent manner. SIMS analysis showed that strontium was distributed in the extracellular matrix of Binos. Finally we also showed the ability of this strain to accumulate radioactive nuclides from water and soil samples collected from a heavily contaminated area in Fukushima. Our results demonstrate that Binos could be applied to the decontamination of iodine, strontium and cesium radioisotopes, which are most commonly encountered after nuclear reactor accidents.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号