首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anillin-related protein Mid1p coordinates the assembly of the cytokinetic contractile ring in fission yeast
Authors:Shambaditya Saha  Thomas D Pollard
Institution:aDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103;bDepartments of Molecular, Cellular and Developmental Biology and of Cell Biology, Yale University, New Haven, CT 06520-8103;Carnegie Mellon University
Abstract:In fission yeast cells cortical nodes containing the protein Blt1p and several kinases appear early in G2, mature into cytokinetic nodes by adding anillin Mid1p, myosin-II, formin Cdc12p, and other proteins, and condense into a contractile ring by movements that depend on actin and myosin-II. Previous studies concluded that cells without Mid1p lack cytokinetic nodes and assemble rings unreliably from myosin-II strands but left open questions. Why do strands form outside the equatorial region? Why is ring assembly unreliable without Mid1p? We found in Δmid1 cells that Cdc12p accumulates in cytokinetic nodes scattered in the cortex and produces actin filaments that associate with myosin-II, Rng2p, and Cdc15p to form strands located between the nodes. Strands incorporate nodes, and in ~67% of cells, strands slowly close into rings that constrict without the normal ~25-min maturation period. Ring assembly is unreliable and slow without Mid1p because the scattered Cdc12p nodes generate strands spread widely beyond the equator, and growing strands depend on random encounters to merge with other strands into a ring. We conclude that orderly assembly of the contractile ring in wild-type cells depends on Mid1p to recruit myosin-II, Rng2p, and Cdc15p to nodes and to place cytokinetic nodes around the cell equator.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号