首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Precursor for biosynthesis of sugar moiety of doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces peucetius ATCC 27952
Authors:Bijay Singh  Chang-Beom Lee  Jae Kyung Sohng
Institution:1. Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, # 100, Kalsan-ri, Tangjeong-myeon, Asansi, Chungnam, 336-708, South Korea
Abstract:The doxorubicin biosynthetic gene cluster in Streptomyces peucetius ATCC 27952 contains a TDP-D-glucose 4,6-dehydratase gene, dnmM, that is putatively involved in the biosynthesis of daunosamine, but the gene contains a frameshift in the DNA sequence that would cause premature termination of translation. In pursuit of another TDP-D-glucose 4,6-dehydratase in S. peucetius, a homologue gene, rmbB, was found, whose deduced product exhibits high sequence similarity to a number of TDP-D-glucose 4,6-dehydratases. The gene was located within a putative rhamnose biosynthetic gene cluster at another locus in the genome. RmbB was verified to be a functional TDP-D-glucose 4,6-dehydratase by enzyme assay as it catalyzed the conversion of TDP-D-glucose into TDP-4-keto-6-deoxy-D-glucose. Inactivation of rmbB in the S. peucetius genome abolished the production of doxorubicin while complementation of the same gene in an rmbB knockout mutant restored the doxorubicin production. Hence, rmbB provides TDP-4-keto-6-deoxy-D-glucose as a nucleotide sugar precursor for the biosynthesis of doxorubicin.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号