首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogeographic structuring and volant mammals: the case of the pallid bat (Antrozous pallidus)
Authors:Sarah E Weyandt  Ronald A Van Den Bussche
Institution:Department of Zoology, 430 Life Sciences West, Oklahoma State University, Stillwater, OK 74078, USA
Abstract:Aim To examine the phylogeographic pattern of a volant mammal at the continental scale. The pallid bat (Antrozous pallidus) was chosen because it ranges across a zone of well‐studied biotic assemblages, namely the warm deserts of North America. Location The western half of North America, with sites in Mexico, the United States, and Canada. Methods PCR amplification and sequencing of the mitochondrial control region was performed on 194 pallid bats from 36 localities. Additional sequences at the cytochrome‐b locus were generated for representatives of each control‐region haplotype. modeltest was used to determine the best set of parameters to describe each data set, which were incorporated into analyses using paup *. Statistical parsimony and measurements of population differentiation (amova , FST) were also used to examine patterns of genetic diversity in pallid bats. Results We detected three major lineages in the mitochondrial DNA of pallid bats collected across the species range. These three major clades have completely non‐overlapping geographic ranges. Only 6 of 80 control‐region haplotypes were found at more than a single locality, and sequences at the more conserved cytochrome‐b locus revealed 37 haplotypes. Statistical parsimony generated three unlinked networks that correspond exactly to clades defined by the distance‐based analysis. On average there was c. 2% divergence for the combined mitochondrial sequences within each of the three major clades and c. 7% divergence between each pair of clades. Molecular clocks date divergence between the major clades at more than one million years, on average, using the faster rates, and at more than three million years using more conservative rates of evolution. Main conclusions Divergent haplotypic lineages with allopatric distributions suggest that the pallid bat has responded to evolutionary pressures in a manner consistent with other taxa of the American southwest. These results extend the conclusions of earlier studies that found the genetic structuring of populations of some bat species to show that a widespread volant species may comprise a set of geographically replacing monophyletic lineages. Haplotypes were usually restricted to single localities, and the clade showing geographic affinities to the Sonoran Desert contained greater diversity than did clades to the east and west. While faster molecular clocks would allow for glacial cycles of the Pleistocene as plausible agents of diversification of pallid bats, evidence from co‐distributed taxa suggests support for older events being responsible for the initial divergence among clades.
Keywords:Antrozous pallidus            control region  cytochrome-b  geographic structure  mitochondrial DNA  North America  phylogeography  Pleistocene  Tertiary  volant mammals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号