首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CYCLICAL ENVIRONMENTAL CHANGES AS A FACTOR MAINTAINING GENETIC POLYMORPHISM. 2. DIPLOID SELECTION FOR AN ADDITIVE TRAIT
Authors:Abraham B Korol  Valery M Kirzhner  Yeafim I Ronin  Eviatar Nevo
Abstract:The subject of this paper is polymorphism maintenance due to stabilizing selection with a moving optimum. It was shown that in case of two-locus additive control of the selected trait, global polymorphism is possible only when the geometric mean fitnesses of double homozygotes averaged over the period are lower than that of the single heterozygotes and of the double heterozygote (with a multiplier 1 – r]p, which depends on recombination rate r and period length p). But local stability of polymorphism cannot be excluded even if geometric mean fitnesses of all double homozygotes are higher than that of all heterozygotes. We proved, that for logarithmically convex fitness functions, cyclical changes of the optimum cannot help in polymorphism maintenance in case of additive control of the selected trait by two equal loci. However, within the same class of fitness functions, nonequal gene action and/or dominance effect for one or both loci may lead to local polymorphism stability with large enough polymorphism attracting domain. The higher the intensity of selection and closer the linkage between selected loci the larger is this domain. Note that even simple cyclical selection could result in two forms of polymorphic limiting behavior: (a) usually expected forced cycle with a period equal to that of environmental changes; and (b) “supercycles,” nondumping auto-oscillations with a period comprising of hundreds of forced oscillation periods.
Keywords:Moving optimum  nonequal gene effects  polymorphism  supercycles  two-locus models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号