首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RATES OF FLORAL EVOLUTION: ADAPTATION TO BUMBLEBEE POLLINATION IN AN ALPINE WILDFLOWER,POLEMONIUM VISCOSUM
Authors:Candace Galen
Abstract:Animal pollinators are thought to shape floral evolution, yet the tempo of this process has seldom been measured. I used the prediction equation of quantitative genetics, R = h2S , to predict the rate at which a change in pollinator abundance may have caused divergence in floral morphology of the alpine skypilot, Polemonium viscosum. A selection experiment determined the rate at which such divergence can actually proceed. Corolla flare in this species increases by 12% from populations pollinated by a wide assemblage of insect visitors to those pollinated only by bumblebees. To simulate the evolutionary process giving rise to this change, I used a pollinator selection experiment. Plants with broad flowers set significantly more seeds than plants with narrow flowers under bumblebee pollination but had equivalent fecundity when visited by other insects or hand-pollinated. Bumblebee-mediated selection for broad corolla flare intensified from 0.07 at seed set to 0.17 at progeny establishment. Maternal parent-offspring regression yielded a confidence interval of 0.22–1.00 for trait heritability. Given these parameter estimates, the prediction equation shows that broadly flared flowers of bumblebee-pollinated P. viscosum could have evolved from narrower ones in a single generation. This prediction is matched by an observed 9% increase in offspring corolla flare after a single bout of bumblebee-mediated selection, relative to offspring of unselected controls. Findings show that plant populations can adapt rapidly to abrupt changes in pollinator assemblages.
Keywords:Bumblebees  floral evolution  Polemonium viscosum  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号