首页 | 本学科首页   官方微博 | 高级检索  
   检索      


POSTMATING REPRODUCTIVE ISOLATION BETWEEN CHRYSOPA QUADRIPUNCTATA AND CHRYSOPA SLOSSONAE: MECHANISMS AND GEOGRAPHIC VARIATION
Authors:Gilberto S Albuquerque  Catherine A Tauber  Maurice J Tauber
Abstract:In laboratory tests, Chrysopa quadripunctata showed geographic variation in a postmating, prezygotic barrier to interbreeding with its sister species, C. slossonae. When paired with C. slossonae males, C. quadripunctata females from populations that are sympatric with C. slossonae (i.e. from New York and Florida) had lower incidences of fertile oviposition than those from allopatric populations (i.e. from Kansas and California). Chrysopa quadripunctata females in all interspecific pairings were inseminated, but absence of fertile oviposition was associated with the lack of sperm transfer from the bursa copulatrix to the spermatheca. The C. quadripunctata females that failed to lay fertile eggs when crossed with C. slossonae males, invariably produced viable C. quadripunctata offspring (no hybrids) within one day after the heterospecific male was replaced with a conspecific one. Thus, the barrier to hybridization may involve the ability of females to (a) distinguish between heterospecific and conspecific sperm and (b) allow the transfer of only conspecific sperm to the spermatheca. When C. slossonae females were paired with C. quadripunctata males, the incidences of fertile oviposition were high and there was no apparent geographic variation in the degree of hybridization. As with C. quadripunctata females, unsuccessful hybridization of C. slossonae females was associated with retention of sperm in the bursa copulatrix. Hybrids did not differ from intraspecific offspring in their viability or sex ratios. However, hybrids whose parents originated from sympatric populations had low fertility; thus hybrid infertility may constitute an additional barrier to hybridization. The patterns of inter- and intraspecific variation in hybridization are consistent with the notions that C. quadripunctata harbors variation in the mechanism that controls sperm movement to the spermatheca and that the evolution of reproductive isolation between C. quadripunctata and C. slossonae may include natural selection for increased expression of this mechanism.
Keywords:Chrysopidae  gametic barrier  hybridization  Insecta  reproductive isolation  sperm transfer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号