首页 | 本学科首页   官方微博 | 高级检索  
     


MULTIPLE ORIGINS OF GENDER-ASSOCIATED MITOCHONDRIAL DNA LINEAGES IN BIVALVES (MOLLUSCA: BIVALVIA)
Authors:Walter R. Hoeh  Donald T. Stewart  Brent W. Sutherland  Eleftherios Zouros
Abstract:Previous studies have shown that marine mussels (genus Mytilus) and a freshwater mussel (Pyganodon grandis) contain two distinct gender-associated mitotypes, which is a characteristic feature of the phenomenon of doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA). Here we present evidence for the presence of distinct male (M) and female (F) mitotypes in three other bivalve species, the mytilid Geukensia demissa, and the unionid species P. fragilis and Fusconaia flava. Nucleotide sequences of a segment of the COI gene from the M and F mitotypes from each of the three mytilid species (M. edulis, M. trossulus, G. demissa) and three unionid species (P. grandis, P. fragilis, F. flava) were used for phylogenetic analysis. The analysis suggests three independent origins of M and F mitotypes for the six species examined; one for the three unionid species, one for the two Mytilus species, and one for Geukensia. The first of these F/M divergence events, while of uncertain age, predates the divergence of the two unionid genera and is likely older than either of the two F/M divergence events in the mytilid taxa. The most parsimonious explanation of multiple F/M divergence events is that they represent independent origins of DUI. Another possibility is that, in a given taxon, an F or M mitotype assumes the role of the opposite mitotype (by virtue of a mechanism that remains to be clarified) and subsequently was fixed within its new gender. The fixation of a mtDNA lineage derived from a mitotype of switched function would reset the divergence of the gender-associated lineages to zero, thereby mimicking a de novo split of F and M lineages from a preexisting mtDNA genome that was not gender specific. Further broad-scale taxonomic studies of the occurrence of distinct M and F mitotypes may allow for the evaluation of the latter hypothesis.
Keywords:Cytochrome c oxidase I  doubly uniparental inheritance  Fusconaia  Geukensia  Mytilus  Pyganodon  phylogenetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号