Abstract: | We present a phylogenetic analysis of the Ambystoma tigrinum complex, based on approximately 840 base pairs of mitochondrial-DNA sequence from the rapidly evolving D-loop and an adjacent intron. Our samples include populations of the continentally distributed species, A. tigrinum, plus all described species of Mexican ambystomatids. Sequence divergence is low, ranging from 0–8.5%, and most phylogenetic groupings are weakly supported statistically. We identified eight reasonably well-defined clades from the United States and Mexico, with the geographically isolated A. californiense from California as the probable sister group to the remaining taxa. Our sequence data are not capable of resolving the relationships among these clades, although the pattern of transitional-site evolution suggests that these eight lineages diverged during a period of rapid cladogenesis. We roughly calibrate a molecular clock and identify a few lineages that significantly deviate from the slow, baseline rate of 0.5–0.75% per million years. Our data also suggest that species boundaries for several U.S. and Mexican species need to be altered and that the concept of a continentally distributed, polytypic tiger salamander is not valid. |