首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes
Authors:Juutinen  Alm  Martikainen  & Silvola
Institution:Department of Biology, University of Joensuu, Joensuu, Finland;Department of Environmental Sciences, University of Kuopio, Kuopio, Finland
Abstract:1. The annual dynamics of methane (CH4) in a temporarily flooded meadow, mire bank, lacustrine sedge fen, temporarily and continuously inundated sedge ( Carex sp.) and reed ( Phragmites australis ) marshes were studied from June to November in the humic mesoeutrophic Lake Mekrijärvi and in eutrophicated parts of the mesotrophic Lake Heposelkä in the southern part of East Finland. The effects of water level and temperature on littoral CH4 fluxes were determined. Vegetation zonation along the moisture gradient, and associated CH4 fluxes, were evaluated.
2. The CH4 flux increased along the moisture gradient from –0.2 to 14.2 mg CH4 m–2 h–1, and was highest in the permanently inundated marshes. The duration of anoxia in the sediment caused differences in the CH4 flux. Estimated emissions for the period 1 June – 30 September in continuously inundated sparse reed and sedge marshes, drying sedge marsh, and lacustrine sedge fen were 13, 11 and 6 g CH4 m–2, respectively.
3. In continuously inundated vegetation, the fluxes were highest in late July/early August. The seasonal CH4 flux pattern suggested that the fluxes were regulated by the supply of organic matter during the course of the summer and the water level. In the temporarily flooded zone, the seasonal CH4 flux dynamics was greatly affected by changes in the lake water level, the fluxes being highest during the spring flood in early June.
Keywords:boreal lake  marsh  flooding  littoral zone  methane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号