首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of the Critical Role of Tyr-194 in the Catalytic Activity of a Novel N-Acyl-Homoserine Lactonase from Marine Bacillus cereus Strain Y2
Authors:X. Lu  Y. Yuan  X.-L. Xue  G.-P. Zhang  S.-N. Zhou
Affiliation:(1) Department of Biochemistry, College of Life Science, SunYat-Sen University, Guangzhou, 510275, China;(2) College of Life Science and Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, 510006, China
Abstract:Enzymatic disruption of quorum-sensing (QS) pathways in pathogenic organisms is a promising anti-infection therapeutic strategy. AHL-lactonase, a potent tool for biocontrol, can hydrolyze QS signal molecule N-acyl-homoserine lactones (AHLs) into inactive products, thereby blocking the QS systems. A marine bacterial isolate Y2, identified as a Bacillus cereus subsp., was found capable of inactivating AHLs. The aiiA gene encoding the AHL-degrading enzyme from bacterial strain Y2 was cloned and expressed in Escherichia coli. The 28-kDa recombinant Y2-AiiA protein was purified and showed strong AHL-degrading activity. Sequence comparisons of Y2-aiiA with known AHL-lactonases revealed high identities in the deduced amino-acid sequences. Functional determination of a potential catalytic residue Tyr-194 of AHL-lactonases was performed by site-directed mutagenesis. As judged by AHL-degrading bioassay, substitution of Tyr-194 with Ala resulted in a dramatic decrease of activity compared with wild-type (WT) recombinant Y2-AiiA, although the expression level of the mutated Y2-AiiA protein was equivalent to that of WT Y2-AiiA. These results suggested that the conserved residue Tyr-194 is critical for catalytic function of the novel AHL-lactonase.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号