首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enterohaemorrhagic Escherichia coli produces outer membrane vesicles as an active defence system against antimicrobial peptide LL‐37
Authors:Akiko Urashima  Ayano Sanou  Hilo Yen  Toru Tobe
Institution:Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
Abstract:Antimicrobial peptides (AMPs) are important components of the innate immune system. Enterohaemorrhagic Escherichia coli (EHEC), a food‐borne pathogen causing serious diarrheal diseases, must overcome attack by AMPs. Here, we show that resistance of EHEC against human cathelicidin LL‐37, a primary AMP, was enhanced by butyrate, which has been shown to act as a stimulant for the expression of virulence genes. The increase of resistance depended on the activation of the ompT gene, which encodes the outer membrane protease OmpT for LL‐37. The expression of the ompT gene was enhanced through the activation system for virulence genes. The increase in ompT expression did not result in an increase in OmpT protease in bacteria but in enhancement of the production of OmpT‐loaded outer membrane vesicles (OMVs), which primarily contributed to the increase in LL‐37‐resistance. Furthermore, a sublethal dosage of LL‐37 stimulated the production of OMVs. Finally, we showed that OMVs produced by OmpT‐positive strains protect the OmpT‐negative strain, which is susceptible to LL‐37 by itself more efficiently than OMVs from the ompT mutant. These results indicate that EHEC enhances the secretion of OmpT‐loaded OMVs in coordination with the activation of virulence genes during infection and blocks bacterial cell attack by LL‐37.
Keywords:butyrate  LL‐37  OmpT protease  OMVs  secretion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号