首页 | 本学科首页   官方微博 | 高级检索  
     


Morphological changes in Ehrlich ascites tumor cells during the cell fusion reaction with HVJ (Sendai virus): II. Cluster formation of intramembrane particles in the early stage of cell fusion
Authors:Jeman Kim  Yoshio Okada
Affiliation:1. Department of Animal Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565, Japan;2. Department of Cell Fusion, National Institute for Basic Biology, Okazaki, Aichi 444, Japan
Abstract:The morphological events in the cell membrane of Ehrlich ascites tumor (EAT) cells associated with cell fusion caused by HVJ were investigated with freeze-fracture technique. When cell fusion was carried out at 37 °C, the EATC fusion was too rapid to allow identification of the sequential steps of membrane fusion and no deleterious changes in the plasma membrane could be detected. However, on lowering the incubation temperature from 37 to 28 °C, the process of cell fusion was slower and there was a distinct alteration in the plasma membrane. On incubation of cell aggregates with HVJ at 28 °C, the fusion reaction proceeded very slowly. On incubation for 10 min, fusion was initiated in a few cells, but most of the cells remained agglutinated with their cell membranes close to those of neighboring cells and often in direct contact in small localized regions. When cells in this stage were chilled and fixed at 4 °C, large clusters of intramembrane particles (IMPs) were seen all over the P face. On further incubation of the cells at 37 °C, cell fusion proceeded rapidly and the IMPs became randomly redistributed, indicating that clustering is a reversible phenomenon occurring in the early stage of cell fusion. This clustering was temperature-dependent. It was seen in cell fixations at 4 °C, but not at 28 °C without chilling, and it was prevented by inhibitors of cell fusion, such as cytochalasin D (CD) or glucose at high concentration. These findings suggest that certain structural changes in the plasma membrane that may induce thermotropic aggregation of IMP are required to initiate cell fusion.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号