首页 | 本学科首页   官方微博 | 高级检索  
     


Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications
Authors:Branchini Bruce R  Southworth Tara L  Khattak Neelum F  Michelini Elisa  Roda Aldo
Affiliation:a Department of Chemistry, Connecticut College, New London, CT 06320, USA
b Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
Abstract:Light emission from the North American firefly Photinus pyralis, which emits yellow-green (557-nm) light, is widely believed to be the most efficient bioluminescence system known, making this luciferase an excellent tool for monitoring gene expression. Here, we present studies leading to the production of a set of red- and green-emitting luciferase mutants with bioluminescent properties suitable for expanding the use of the P. pyralis system to dual-color reporter assays, biosensor measurements with internal controls, and imaging techniques. Using a combination of mutagenesis methods, we determined that the Ser284Thr mutation was sufficient to create an excellent red-emitting luciferase with a bioluminescence maximum of 615 nm, a narrow emission bandwidth, and favorable kinetic properties. Also, we developed a luciferase, containing the changes Val241Ile, Gly246Ala, and Phe250Ser, whose emission maximum was blue-shifted to 549 nm, providing a set of enzymes whose bioluminescence maxima were separated by 66 nm. Model studies demonstrated that in assays using a set of optical filters, the luciferases could be detected at the attomole level and seven orders of magnitude higher. In addition, in the presence of the Ser284Thr enzyme serving as a control, green light emission could be measured over a 10,000-fold range. The results presented here with the P. pyralis mutants provide evidence that simultaneous multiple analyte assay development is feasible with these novel proteins that require only a single substrate.
Keywords:Bioluminescence   Firefly   Luciferase   Mutagenesis   Imaging   Reporter   Dual color   Red emission   Multiplex assay
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号