首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression of cellular retinoic acid binding protein (CRABP) in Escherichia coli. Characterization and evidence that holo-CRABP is a substrate in retinoic acid metabolism.
Authors:P D Fiorella  J L Napoli
Institution:Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214.
Abstract:Cellular retinoic acid binding protein (CRABP) has been expressed efficiently in Escherichia coli from the cDNA of bovine adrenal CRABP and characterized, especially with respect to affinity for endogenous retinoids and a role for it in retinoic acid metabolism. The purified E. coli-expressed CRABP was similar to authentic mammalian CRABP in molecular weight (approximately 14,700), isoelectric point (4.76), absorbance maxima (apo-CRABP, 280 nm; holo-CRABP, 350 and 280 nm with the ratio A350/A280 = 1.8), and in fluorescence excitation (350 nm) and emission spectra (475 nm). The equilibrium dissociation constant, Kd, of E. coli-derived CRABP and all-trans-retinoic acid was 10 +/- 1 nM (mean +/- S.D., n = 4) by retinoid fluorescence and 7 +/- 1 nM (mean +/- S.D., n = 3) by quenching of protein fluorescence, but neither retinol nor retinal bound in concentrations as high as 7 microM. All-trans-cyclohexyl ring derivatives of retinoic acid (3,4-didehydro-, 4-hydroxy-, 4-oxo-, 16-hydroxy-4-oxo-, 18-hydroxy-) had affinities similar to that of all-trans-retinoic acid, whereas 13-cis-retinoic acid and 4-oxo-13-cis-retinoic acid had approximately 25-fold lower affinity. Holo-CRABP was a substrate for retinoic acid catabolism in rat testes microsomes by three criteria: 1) the rate of retinoic acid metabolism with CRABP in excess of retinoic acid exceeded the rate supported by the free retinoic acid; 2) increasing the apo-CRABP did not decrease the rate as predicted if free retinoic acid were the only substrate; and 3) holo-CRABP had a lower Michaelis constant (1.8 nM) for retinoic acid elimination than did free retinoic acid (49 nM). These data indicate a direct role for CRABP in retinoic acid metabolism and suggest a mechanism for discriminating metabolically between all-trans- and 13-cis-retinoids.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号