首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of the Muscarinic Acetylcholine Receptor: Effects of Phosphorylating Conditions on Agonist and Antagonist Binding
Authors:Robert D. Burgoyne
Affiliation:Laboratory of Biological Ultrastructure, National Institute for Medical Research, Mill Hill, London, England
Abstract:Incubation of rat brain synaptic membranes under phosphorylating conditions (i.e., in the presence of Mg2+, ATP, and cyclic AMP) leads to a loss in muscarinic acetylcholine receptors, detectable as specific binding of the muscarinic antagonist L-[3H]quinuclidinyl benzilate. A role for protein phosphorylation in this receptor loss is indicated by the finding that 5'-adenylyl imidodiphosphate, a nonhydrolysable analogue of ATP, does not support receptor loss. Furthermore, receptor loss is inhibited by adenosine and 2-deoxyadenosine, both of which inhibit protein kinase activity. The loss of muscarinic receptors is calmodulin dependent, and it has been demonstrated here that this requirement is probably at the level of calmodulin-dependent phosphorylation. An investigation of the effects of phosphorylation on the binding of the agonist carbachol to synaptic membranes from the cortex and cerebellum demonstrated that phosphorylation altered the relative proportions of the super-high-, high-, and low-affinity binding sites. The results were consistent with an apparent conversion of high- into super-high-affinity sites. In the presence of 5'-guanylyl imidodiphosphate, agonist binding demonstrated the properties expected of a population of largely low-affinity sites. This conversion of super-high- and high-affinity sites into low-affinity sites by 5'-guanylyl imidodiphosphate was partially inhibited by phosphorylation.
Keywords:Muscarinic receptor    Phosphorylation    Acetylcholine    Synaptic membranes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号