首页 | 本学科首页   官方微博 | 高级检索  
     


Divalent metal ion effects on a mutant histidinol phosphate phosphatase from Salmonella typhimurium
Authors:L L Houston  M E Graham
Affiliation:Department of Biochemistry, University of Kansas, Lawrence, Kansas 66045 USA
Abstract:The effect of divalent metal ions on the activity of a mutant histidinol phosphate phosphatase has been studied. The enzyme was isolated from strain TA387, a mutant of Salmonella typhimurium with a nonsense lesion near the midpoint of the bifunctional hisB gene. Mn2+, Mg2+, Co2+, and Zn2+ shift the optimal pH of phosphatase activity to 6.5 while Be2+ and Ca2+ have no effect on the shape of the pH profile. In the absence of divalent metal ions, the pH optimum is 7.5. Four Me2+ ions, Mn2+, Co2+, Zn2+, and Fe2+ decreased the Km of histidinol phosphate at pH 6.5 from 5.5 mm (without Me2+) to 0.14 mm. Ni2+ and Be2+ increased the Km to 22.2 and 25.0 mm, respectively, and Ca2+ and Mg2+ had an intermediate effect. Changes in maximal velocity were substantially less, only about 2-fold changes being observed. It was shown that the maximal velocity at optimal pH was the same in the absence and presence of Mn2+. Kinetic analysis indicated that there was a rapid equilibrium-ordered addition of Mn2+ to the enzyme before the addition of the substrate, histidinol phosphate. A kimn2+ of 4.3 μm was calculated for the metal ion activation at both pH 6.5 and 7.5. Addition of ethyl-enediaminetetracetate (EDTA) strongly inhibited the phosphatase; inhibition could be reversed by addition of several Me2+ ions, Mg2+ being the most efficient followed by Mn2+. Prolonged incubation with EDTA led to irreversible inactivation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号